ALGEBRAIC COHOMOLOGY OF TOPOLOGICAL GROUPS

BY

DAVID WIGNER

ABSTRACT. A general cohomology theory for topological groups is described, and shown to coincide with the theories of C. C. Moore [12] and other authors. We also recover some invariants from algebraic topology.

This article contains proofs of results announced in [15]. We consider algebraic cohomology groups of topological groups, which are shown to include the invariants considered by Van Est [6], Hochschild and Mostow [7], C. C. Moore [12], and Tate (see [5]). We identify some of these groups as invariants familiar from algebraic topology.

Let G be a topological group. A topological G-module is an abelian topological group A together with a continuous map $G \times A \to A$ satisfying the usual relations g(a+a)=ga+ga', (gg')a=g(g'a), 1a=a. The category of topological G-modules and equivariant continuous homomorphisms is a quasiabelian category in the sense of Yoneda [16], and hence we get Ext functors just as in an abelian category. A proper short exact sequence will be a sequence $0 \to A \to B \xrightarrow{u} C \to 0$ of topological G-modules which is exact as a sequence of abstract groups and such that A has the subspace topology induced by its embedding in B, and such that u be an open map. For any G-module A we define the algebraic cohomology groups $H^i(G, A)$ to be the ith Ext group $Ext^i(Z, A)$, where Z denotes the group of integers with the discrete topology and trivial G-action.

There is another set of short exact sequences we might have chosen which also give the category of topological G-modules the structure of a quasi-abelian S-category in the sense of Yoneda. We might have demanded that in addition to being exact in the previous sense, there be a continuous map $s: C \to B$ such that the composition $u \circ s$ be the identity on C. If G is locally compact we recover the "continuous cochains" theory, which is discussed in [5], [6], and [7]. If G is not locally compact it must be shown that continuous cochains are effaceable, i.e. that for any continuous cocycle $c: G^n \to A$ there is a short exact sequence $0 \to A \xrightarrow{\tau} B \to C \to 0$ such that $\tau \circ c$ is the coboundary of a

Received by the editors September 24, 1971.

AMS (MOS) subject classifications (1970). Primary 22A05.

continuous cochain $c': G^{n-1} \to B$. If G has the weak topology with respect to a countable collection of compact sets, this will follow from a lemma of Milnor [11].

In this paper we consider only complete metric G-modules. This is made plausible by a theorem of L. Brown, [2] that if C and A are complete metric G-modules, then the groups $\operatorname{Ext}^n(C,A)$ do not depend on whether we consider all, all pseudometrizable, or all complete metric G-modules, provided that G is weakly separable (i.e. that any uniform cover of G has a countable subcover). Furthermore our arguments also apply to the category of complete separable metric G-modules, hence to the functors of [12].

1. Definition of the $H^i(G, A)$. (See [16], also [9, Chapter 12, 5].) Let M be an additive category (with direct sums) and $\phi: A \to B$ be a map in M. A map $N \to A$ is called the kernel of ϕ if the induced sequence of abelian groups $0 \to \text{Hom}(C, N) \to \text{Hom}(C, A) \to \text{Hom}(C, B)$ is exact for any object C of M. Dually a map $B \to L$ is called the cokernel of ϕ if the sequence

$$0 \to \operatorname{Hom}(L, C) \to \operatorname{Hom}(B, C) \to \operatorname{Hom}(A, C)$$

is exact for any object C of M. This implies that the compositions $N \to A \to B$ and $A \to B \to L$ are 0.

Definition. A sequence $0 \to A \xrightarrow{\sigma} B \xrightarrow{\tau} C \to 0$ of maps in M is called proper exact if σ is the kernel of τ and τ is the cokernel of σ . An n-term long exact sequence in M is a sequence of short exact sequences

$$S_i = 0 \longrightarrow A_i \xrightarrow{\sigma_i} B_i \xrightarrow{\tau_i} C_i \longrightarrow 0, \quad 1 \le i \le n,$$

such that $C_i = A_{i+1}$ for $1 \le i \le n$. It will usually be written

$$0 \to A_1 \xrightarrow{\sigma_1} B_1 \xrightarrow{\rho_1} B_2 \cdots \xrightarrow{p_{n-1}} B_n \xrightarrow{r_n} C_n \to 0$$

where $\rho_i = \sigma_{i+1} \circ \tau_i$. Yoneda defines EXTⁿ(C, A) as the set of n-term long exact sequences with $A_1 = A$, $C_n = C$.

Definition (Yoneda). An additive category is called quasi-abelian if it satisfies the following conditions (Q) and (Q^*) :

(Q) Any proper exact sequences $0 \to A \to B' \to C' \to 0$ and $0 \to C \to C'$ can be combined into a commutative diagram with proper exact rows and columns:

(Diagram Q)
$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

$$0 \rightarrow A \rightarrow B' \rightarrow C' \rightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$D = D$$

$$\downarrow \qquad \downarrow$$

$$0 \rightarrow 0$$

(Q*) Any proper exact sequences $0 \to A \to B \to C \to 0$ and $A \to A' \to 0$ can be combined into a commutative diagram with proper exact rows and columns:

$$\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
D = D \\
\downarrow & \downarrow \\
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \\
\downarrow & \downarrow & \parallel \\
0 \rightarrow A' \rightarrow B' \rightarrow C \rightarrow 0 \\
\downarrow & \downarrow & \parallel \\
0 \rightarrow O & \downarrow & \downarrow \\
0 & 0 & \downarrow & \downarrow \\
\end{array}$$

A quasi-abelian S-category is an additive category with a distinguished subset S of proper exact sequences which satisfy Q and Q^* .

As an example we have the category of all abelian topological groups and all proper maps thereof; in this case a map is proper if and only if it is open with respect to the relative topology of its range. In Diagram Q, C is a closed subgroup of C', B is its inverse image in B' which is again a closed subgroup. Since $B \supset A$ we have $B/B' \cong C/C'$ which is D. This verifies (Q). In Diagram Q^* , D is the kernel of $A \to A'$, $B' \cong B/D$, and $A \supset D$, we have $B'/A' \cong$ $B/A \cong C$. Also for any fixed Hausdorff topological group G one can consider the category M_G of G-modules, complete metrizable abelian topological groups A with continuous action $G \times A \rightarrow A$ satisfying 1a = a, (gg')a = g(g'a) and g(a + a') = ga + ga' and continuous equivariant homomorphisms. As with abelian topological groups the totality of all proper maps gives \mathfrak{M}_G the structure of a quasi-abelian S-category and henceforth M_G will be assumed to be equipped with this structure. In a quasi-abelian category Yoneda defines functors $\operatorname{Ext}^n(C,A)$ as a certain quotient of $\mathrm{EXT}^n(C,A)$, the set of n-term long exact sequences. Let $0 \to A \to B_1 \to \cdots \to B_n \to C \to 0$ and $0 \to A \to B_1' \to \cdots \to B_n' \to C \to 0$ be elements of $EXT^n(C, A)$. We say there is a map between them if there exists a commutative diagram

$$0 \to A \to B_1 \to \cdots \to B_n \to C \to 0$$

$$\parallel \qquad \downarrow \qquad \qquad \parallel$$

$$0 \to A \to B_1' \to \cdots \to B_n' \to C \to 0$$

 $\operatorname{Ext}^n(C, A)$ is defined as the quotient of $\operatorname{EXT}^n(C, A)$ under the equivalence relation generated by maps between long exact sequences.

If A is a G-module, we define $H^i(G, A)$ to be $\operatorname{Ext}_{\mathbb{A}_G}^i(Z, A)$, where Z is the group of integers with the discrete topology and trivial G-action.

It follows from Yoneda's work that if $0 \to A \to B \to C \to 0$ is a proper

exact sequence of topological G-modules, we have a long exact sequence

$$0 \to H^0(G, A) \to H^0(G, B) \to H^0(G, C) \to H^1(G, A)$$
$$\to H^1(G, B) \to H^1(G, C) \to H^2(G, A) \to \cdots$$

We can then complete a diagram chase to show the $H^i(G, A)$ are universal functors [4] and prove a "Buchsbaum criterion" for the $H^i(G, A)$. Namely an exact connected sequence of functors $\widetilde{H}^i(G, A)$ is naturally isomorphic to the $H^i(G, A)$ if $\widetilde{H}^0(G, A) \cong H^0(G, A)$ and satisfies the following condition:

For i > 0 and $X \in \widetilde{H}^i(A)$ there exists a proper monomorphism $\theta \colon A \to B$ such that $\theta_*(X) = 0$. It follows immediately from Buchsbaum's criterion and results of C. C. Moore [12] that the functors of [12] coincide with the $H^i(G, A)$ described above.

Henceforward let G be locally compact σ -compact and let \mathbb{M}_G be the category of complete metric G-modules. If A is a G-module let $C^n(G,A)$ be the set of continuous maps of the n-fold cartesian product G^n into A. Let $\delta_n \colon C^n(G,A) \to C^{n+1}(G,A)$ be the usual coboundary operator: $\delta_n f(g_0,\cdots,g_n) = g_0 f(g_1\cdots g_n) - f(g_0g_1,g_2,\cdots,g_n) + \cdots + f(g_0,\cdots,g_{n-1})$. Define $\widehat{H}^n(G,A)$ as the nth cohomology group of the complex $0 \to C^0(G,A) \xrightarrow{\delta_0} C^1(G,A) \xrightarrow{\delta_1} \cdots C^0(G,A) \cong A$ are the continuous functions from G^0 = point into A. $\delta_0 a = ga - a$ so $\widehat{H}^0(G,A) \cong \operatorname{Hom}_{\mathbb{M}_G}(\mathbb{Z},A) \cong H^0(G,A)$. If $F(G,A) \in \mathbb{M}_G$ is the module of continuous functions from G into A topologized with the compact open topology, the natural map $A \to F(G,A)$ kills $\widehat{H}^i(G,A)$ (cf. [7]). The \widehat{H}^i form an exact connected sequence of functors if we demand that all short exact sequences $0 \to A \to B \xrightarrow{\pi} C \to 0$ have a section, i.e. a continuous map $\rho \colon C \to B$ such that $\pi \circ \rho = \operatorname{identity}$. We call this the "continuous cochains" theory.

Now suppose G is zero-dimensional. Then the $\widetilde{H}^i(G, A)$ are exact for arbitrary short exact sequences because of the following theorem of Michael:

Theorem M. If $\pi: B \to C$ is an open homomorphism of complete metric topological groups, and if $q: G \to C$ is a continuous map of a 0-dimensional paracompact space into C, then there exists a continuous map $\rho: G \to B$ with $\pi \circ \rho = q$.

Hence by Buchsbaum's criterion

Theorem 1. If G is locally compact, σ -compact, zero-dimensional, $H^i(G, A) \cong \mathcal{H}^i(G, A)$ defined above.

We now show how to embed an arbitrary complete metric G-module in a contractible complete metric G-module. Let A be a complete metric G-module with a bounded, invariant metric ρ . Let S be the topological group of step functions from the unit interval [0, 1] to A which have only finitely many steps with metric obtained from integrating ρ on [0, 1] and natural G action. $G \times S \longrightarrow S$ is con-

tinuous since the functions of S assume only finitely many values. Let \mathscr{E}_A be the completion of S which is also a G-module by [2] or [12]. \mathscr{E}_A will be the space measurable functions $[0, 1] \to A$ modulo functions almost everywhere 0. Let C: $\mathscr{E}_A \times [0, 1]$ be defined by

$$C(f, \alpha)(x) = 0,$$
 if $x < \alpha,$
= $f(x)$, if $x > \alpha$.

C is a contraction of \mathfrak{S}_A which shrinks all distances; hence \mathfrak{S}_A is contractible and locally contractible. In fact any contractible topological group is locally contractible.

2. Some fibration properties of open homomorphisms.

Lemma 1. Let $0 \to A \to B \xrightarrow{\rho} C \to 0$ be an exact sequence of complete metric abelian groups with A locally arcwise connected. Let PB (respectively PC) denote the space of continuous paths in B (respectively C) starting at the identity with the topology of uniform convergence. Then the induced map $\rho_*: PB \to PC$ is open.

Proof. Since PB and PC are complete metric abelian topological groups, it will be enough to show ρ_* almost open by the open mapping theorem. Let d be an invariant metric on B. d induces an invariant metric d' on C by taking the distance between cosets of A. Let $\epsilon > 0$; we must show there exists a δ such that for any path in C, $p: [0, 1] \to C$ such that for all $x \in [0, 1]$, $d(p(x), id) < \delta$ and for all y > 0 there is a path in B, $q: [0, 1] \to B$ such that for all $y \in [0, 1]$, $d(q(y), id) < \epsilon$ and $d(pq(y), p(y)) < \gamma$. Now d induces a metric on d. Pick d is d induced that any two points in d at distance d induces a metric of d induced by a path in d, all of whose points d is satisfy d(d) = d. Now by a theorem of Michael [11, II, Theorem 1.2], d if d if d is like d in d is compact we can assume it covered by a finite number of subintervals d is compact we can assume it covered by a finite number of subintervals d is continuous such that d is d is d in d is a path d in d

Define q as follows: for

$$0 \le x \le b, \qquad q(x) = q'_1(x),$$

$$b_i + \beta \le x \le b_{i+1}, \qquad q(x) = q'_{i+1}(x),$$

$$b_i \le x \le b_i + \frac{1}{2}\beta, \quad q(x) = r_i((x - b_i)/\beta),$$

$$b_i + \frac{1}{2}\beta \le x \le b_i + \beta, \qquad q(x) = q''_{i+1}(b_i + (2(x - b_i)/\beta - 1)\beta).$$

It is clear that q has the required properties. The idea of this construction is to splice the q'_i together without going far from the origin. This proves the lemma.

Definition. A complete metric abelian topological group A is said to have property F if for any short exact sequence of complete metric abelian topological groups $0 \to A \xrightarrow{\sigma} B \xrightarrow{\tau} C \to 0$, τ has the homotopy lifting property for finite dimensional (paracompact) spaces. Dimension will be understood in the sense of Lebesgue covering dimension. \mathfrak{M}_G^F will denote the category of complete metric G-modules having property F, where a sequence is exact if it is exact in \mathfrak{M}_G .

Proposition 1. Let $0 \to A \to B \to C \to 0$ be exact in \mathfrak{M}_G where A, C have property F. Then B has property F.

Proof. Let $0 \to A \to B \to C \to 0$ in \mathfrak{M}_G where A and C have property F. Let also $0 \to B \to D \xrightarrow{\rho} E \to 0$ in \mathfrak{M}_G . Consider the diagram in \mathfrak{M}_G .

$$\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
A & A \\
0 \longrightarrow B \longrightarrow D \xrightarrow{\rho} E \longrightarrow 0 \\
0 \longrightarrow C \longrightarrow C' \xrightarrow{\sigma} E \longrightarrow 0 \\
\downarrow & \downarrow \\
0 & 0
\end{array}$$

Let $h: X \times I \to E$ be a homotopy of which property F would guarantee a lifting. Since C has property F, h can be lifted to C. Since A has property F, h can be lifted to D. This proves B has property F.

Corollary. \mathfrak{M}_G^F is a quasi-abelian S-category.

Proposition 2. If A is a locally compact closed subgroup of a topological group G the projection $G \to G/A$ is a fibration.

Proof. First suppose A compact. Let b be a homotopy of $X \times I \to G/A$ and b_1 be a lifting $X \times I \to G$. Consider the set S of pairs (A_α, b_α) where A_α is closed in A, π_α : $G \to G/A_\alpha$, b_α : $X \times I \to G/A_\alpha$, $\pi_\alpha \circ b_\alpha = b$, $\pi_\alpha \circ b_1 = b_\alpha | X \times I$. We define a partial order on S. If $A_\alpha \subset A_\beta$, $\pi \colon G/A_\alpha \to G/A_\beta$ and $\pi \circ b_\alpha = b_\beta$ we say $(A_\alpha, b_\alpha) > (A_\beta, b_\beta)$. If $\{(A_\gamma, b_\gamma)\}_\gamma$, I is a linearly ordered subset of S we obtain

$$\widetilde{b}: X \times I \to \underset{\gamma \in I}{\underline{\lim}} \frac{G}{A_{\gamma}} = \frac{G}{\bigcap_{\gamma \in I} A_{\gamma}}$$

and $(\bigcap_{\gamma \in I} A_{\gamma}, \widetilde{b})$ is an upper bound. Hence Zorn's lemma applies, and S has

 (A_{δ}, b_{δ}) maximal. But if $A_{\delta} \neq \{1\}$, A_{δ} has a proper closed subgroup $A_{\epsilon} \neq A_{\delta}$ such that A_{δ}/A_{ϵ} is a Lie group. Hence $G/A_{\epsilon} \to G/A_{\delta}$ has a local section and is a fibration, hence (A_{δ}, b_{δ}) cannot have been maximal. Hence $A_{\delta} = \{1\}$. This shows $G \to G/A$ has a homotopy lifting property for A compact. But by the structure theorem any locally compact A has an open subgroup A' such that A' has a compact normal subgroup A'' such that A'/A'' is a Lie group A'' is a fibration by A'' is a Lie group A'' is a fibration by A'' is discrete so A'/A'' is discrete so A'/A'' is even a covering space. Since A'/A'' is a composite of fibrations it is a fibration.

Corollary. A locally arcwise compact metric G-module is in \mathfrak{M}_{G}^{F} .

Proposition 3. A locally connected complete metric abelian topological group has property F.

Proof. Let PX denote the space of base-pointed paths of X. Consider the diagram

$$0 \to PA \to P\mathcal{E}_{A} \xrightarrow{\phi} P\mathcal{E}_{A}/A \to 0$$

$$\downarrow \qquad \qquad \downarrow \psi \qquad \qquad \downarrow \mathbf{x}$$

$$0 \to A \to \mathcal{E}_{A} \xrightarrow{r} \mathcal{E}_{A}/A \to 0$$

The top row is exact by Lemma 1 and ϕ has the homotopy lifting property for finite dimensional spaces since PA is locally contractible by Michael [10, Theorem 3.4, Proposition 4.1 and Corollary 4.2]. Let Z be finite dimensional, $h: Z \times I \to \mathcal{E}_A/A$, $h': Z \to \mathcal{E}_A$ with $\tau \circ h' = h \mid Z \times 0$. ψ is a fibration with contractible base so it has a section $s: \mathcal{E}_A \to P\mathcal{E}_A$. $\chi \circ \phi$ has the HLP for Z since both X and ϕ do, hence there exists $g: Z \times I \to P\mathcal{E}_A$ with $g \mid Z \times 0 = s \circ h'$, and $\chi \circ \phi \circ g = h$, $\chi \circ g$ is a lifting of h to \mathcal{E}_A by the commutativity of the diagram. This shows that τ has the HLP for Z.

We form the diagram

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$0 \longrightarrow E_A \longrightarrow P \xrightarrow{\rho'} C \longrightarrow 0$$

$$\downarrow^{\tau} \qquad \downarrow^{\tau'} \qquad \downarrow^{\tau'}$$

$$E_A/A = E_A/A$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow 0$$

Let $h: X \times I \to C$, $h': X \to B$ with $h' = h \mid X \times 0$ and X finite dimensional.

Since \mathfrak{S}_A is locally contractible, ρ' has the homotopy lifting property for finite dimensional spaces again by Theorem 3.4 of [10] so there exists $g\colon X\times I\to P$ with $\rho'\circ g=b$ and $g\mid X\times 0=\phi'\circ b'$. Since $\tau'\circ \phi'\circ b'=0$ there exists $f\colon X\times I\to \mathfrak{S}_A$ with $\tau\circ f=g$ and $f\mid X\times 0=0$. Since τ has the HLP for X, $\tau'\circ (g-\sigma'\circ f)=0$ so the range of $g-\sigma'\circ f$ lies entirely in B. Hence $\phi'^{-1}\circ (g-\sigma'\circ f)$ is defined and lifts b as required. This proves the proposition.

Proposition 4. If A, C are in
$$\mathfrak{M}_G^F$$
, $\operatorname{Ext}_{\mathfrak{M}_G^F}(C, A) \cong \operatorname{Ext}_{\mathfrak{M}_G}(C, A)$.

Proof. Consider

$$\begin{array}{ccc} 0 \longrightarrow A \longrightarrow B & & & \\ \parallel & \downarrow & & \\ 0 \longrightarrow A \longrightarrow \mathcal{E}_B \longrightarrow \mathcal{E}_B/A \longrightarrow 0 \end{array}$$

with $A \in \mathbb{M}_G^F$ and $B \in \mathbb{M}_G^{CM}$. \mathcal{E}_B is locally arcwise connected, hence \mathcal{E}_B/A is locally arcwise connected and in \mathbb{M}_G^F . Hence anything which is effaceable in \mathbb{M}_G is effaceable in \mathbb{M}_G^F and Buchsbaum's criterion is verified.

3. Double complex. We now assign to the topological group G a semisimplicial G-space S(G). S(G) is a semisimplicial object in the category of topological spaces with jointly continuous action of the group G and equivariant maps. The n-simplex S_n of this semisimplicial complex was the (n+1)-fold cartesian power G^{n+1} of the space underlying the group G, and the faces and degeneracies were as follows:

$$\begin{split} d_{0}g(g_{1}, g_{2}, \cdots, g_{n}) &= gg_{1}(g_{2}, \cdots, g_{n}), \\ d_{i}g(g_{1}, \cdots, g_{n}) &= g(g_{1}, \cdots, g_{i-1} g_{i}, \cdots, g_{n}) \text{ for } 0 < i < n, \\ d_{n}g(g_{1}, \cdots, g_{n}) &= g(g_{1}, \cdots, g_{n-1}), \\ s_{i}g(g_{1}, \cdots, g_{n}) &= g(g_{1}, \cdots, g_{i-1}, 1, g_{i}, \cdots, g_{n}). \end{split}$$

G acts by left multiplication on the argument outside the parenthesis.

Let A be a G-module. Using the action of G on S_n and A we form the space $S_n \times_G A$ and consider the natural projections $p_n \colon S_n \times_G A \to S_n/G$. The faces and degeneracies of S(G) induce faces and degeneracies on the $S_n \times_G A$ and on the S_n/G making them into semisimplicial spaces and these faces and degeneracies commute with the natural projections p_n . Let T_n be the sheaf of germs of continuous sections of p_n . Since the identity of A is fixed by G, there is an isomorphism of T_n with the sheaf of germs of continuous A-valued functions on S_n/G . The T_n have faces and degeneracies induced by the faces and degeneracies of S(G). The T_n thus form a semisimplicial sheaf T(G,A) over the S_n/G , i.e. a semisimplicial object in the category of spaces with sheaves and

cohomomorphisms. We apply the canonical semisimplicial resolution functor [1, Chapter II] to the semisimplicial sheaf T(G, A). We then get a double complex of abelian groups, $D^{p,q}(G, A) = \int p(S_q/G, T_q)$ the pth stage of the canonical semisimplicial resolution of the sheaf T_q over S_q/G . We denote the pth cohomology group of this double complex by $\hat{H}^p(G, A)$.

Associated to $D^{p,q}$ is a spectral sequence with E_1 term $E_1^{p,q} \cong H^p(S_q/G, T_q)$, the sheaf cohomology of S_q/G with coefficient sheaf T_q . Since S_0/G is a point, $E_1^{0,0}$ is the abstract group underlying A. If $z \in A$, $d_1(a) \in H^0(S_1/G, T_1)$ is a continuous function from $S_1/G \cong G$ into A. In fact $d_1(a)$ maps g into ga - a, hence we see that $H^0(G, A) \cong A^G \cong \hat{H}^0(G, A)$ where A^G is the abstract group of points of A fixed by G.

Now suppose G is finite dimensional. G is then locally $Z \times N$ where Z is a simplex and N is 0-dimensional. Now let $0 \to A \to B \xrightarrow{\tau} C \to 0$ be a short exact sequence in \mathfrak{M}_G^F . We will show $\tau_* \colon D^{p,q}(G,B) \to D^{p,q}(G,C)$ is surjective. If q=1 and l is a germ of a continuous map of G into G, I can be represented by a continuous map $I: Z \times N \to C$ where I is 0-dimensional and I is a simplex. If $I \in C$, $I \in C$,

To prove effaceability we first consider the proper injection $A \to \mathcal{E}_A$. Since \mathcal{E}_A is contractible we have by [4, Lemma 4] that $E_1^{p,q}(G,\mathcal{E}_A)=0$ for p>0. Hence $\hat{H}^*(G,\mathcal{E}_A)$ is given by the complex of continuous cochains. Since G is locally compact continuous cochains are effaceable, and it follows that continuous cochains are effaceable in \mathcal{M}_G^F . We have verified Buchsbaum's criterion for the $\hat{H}^*(G,A)$. Therefore:

Theorem 2. If G is locally compact, σ -compact, finite dimensional and A has property F, $H^*(G, A) \cong \hat{H}^*(G, A)$ described above.

4. Spectral sequence. In this section all groups will be finite dimensional, locally compact, σ -compact and all modules will be in \mathbb{M}_G^F .

If A is a vector space the spectral sequence collapses from \boldsymbol{E}_2 onward and we get:

Theorem 3. $H^*(G, \Lambda)$ is given by the complex of continuous cochains if Λ is a vector group.

Corollary. If G is a connected Lie group $H^*(G, \Lambda) \cong H^*(G, K, \Lambda)$ the Lie algebra cohomology of G modulo the Lie algebra of a maximal compact subgroup, if Λ is a finite dimensional vector space on which G acts linearly and differentiably.

Proof. Hochchild and Mostow [7] have shown $H^*(\mathcal{G}, K, A)$ is given by continuous cochains in this case.

Now let A be a discrete G-module. We will see that the algebraic cohomology $H^*(G,A)$ coincides with the sheaf cohomology of the classifying space. Let π : $E_G \to B_G$ be a principal universal G-bundle with paracompact base. There is a semisimplicial G-space whose n-simplex is the (n+1)-fold fiber product F_n of E_G over B_G , by regarding the (n+1)-fold fiber product as the set of maps of $\{0,1,\cdots,n\}$ into E_G whose range is contained in a single G-orbit, G acts on $E_G \times_{B_G} E_G \cdots \times_{B_G} E_G$ by the diagonal action. Consider the sheaves of germs of continuous sections of the associated bundles $F_n \times_G A \to F_n/G$. They form a semisimplicial sheaf and by applying the canonical semisimplicial resolution functor we get a double complex which we denote by $R^{p,q}$. The injection of G into the fiber of π induces a homomorphism $R^{p,q} \to D^{p,q}(G,A)$. This induces a map from the first spectral sequence of the double complex $R^{p,q}$ into the spectral sequence described in the last section. On the E_1 terms we get the map:

$$0 \to H^*(E_G, A) \longrightarrow H^*(E_G \underset{\downarrow}{\times}_{B_G} E_G, A) \to \cdots$$

$$0 \to H^*(\text{point}, A) \to H^*(G, A) \to \cdots$$

But

$$F_n = \overbrace{E_G \times_{B_G} \dots \times_{B_G} E_G}^{n+1 \text{ times}}$$

is homeomorphic to $E_G \times G \times \cdots \times G$ which is homotopy equivalent to $G \times \cdots \times G$.

Therefore by the homotopy axiom for sheaf cohomology with constant coefficients [2] we have an isomorphism of E_1 terms. Hence the E_{∞} terms coincide.

Now for each point x of B_G pick a section s_x : $B_G \to E_G$ which is continuous in some neighborhood of x. For an n-tuple (e_1, \dots, e_n) in $E_G \times_{B_G} \dots \times_{B_G} E_G$ with $\pi(e_i) = b$ define k_x : $F_n \to F_{n+1}$ by $k_x(e_1, \dots, e_n) = (s_x(b), e_1, \dots, e_n)$. Now an element of $R^{p,q}$ is represented by a function $f: (F_q)^{p+1} \to A$ so define $b: R^{p,q} \to R^{p,q-1}$ by $hf(X_0, \dots, X_p) = f(k_b(X_0), k_b(X_1), \dots, k_b(X_p))$ where $b = \pi(X_0)$. b is well-defined since s_b is continuous in a neighborhood of b. Let $d: R^{p,q} \to R^{p,q+1}$ be induced by the space map. d is then the 0th differential of the second spectral sequence of the double complex $R^{p,q}$. db + bd = identity unless q = 0. The kernel of d on $R^{p,0}$ consists just of functions constant on the G-orbits of E_G . Hence the E_1 term of the second spectral sequence of $R^{p,q}$ is the canonical resolution of the locally constant sheaf A on B_G . Therefore

Theorem 4. $H^*(G, A)$ is the sheaf cohomology of the classifying space B_G with coefficients in the locally constant sheaf A, if A is a discrete G-module.

BIBLIOGRAPHY

- 1. G. E. Bredon, Sheaf theory, McGraw-Hill, New York, 1967. MR 36 #4552.
- 2. L. Brown, Separability, metrizability, completeness and extensions of topological groups (to appear).
- 3. D. A. Buchsbaum, Satellites and universal functors, Ann. of Math. (2) 71 (1960), 199-209. MR 22 #3751.
- 4. J. Dixmier and A. Douady, Champs continus d'espaces hilbertiens et de C*-algèbres, Bull. Soc. Math. France 91 (1963), 227-284. MR 29 #485.
- 5. A. Douady, Cohomologies des groupes compacts totalement discontinues, Séminaire Bourbaki 1959/60, Exposé 189, fasc. 1, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.
- 6. W. T. van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indag. Math. 15 (1953), 484-504. MR 15, 505.
- 7. G. P. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illionis J. Math. 6 (1962), 367-401. MR 26 #5092.
- 8. J. L. Koszul, Multiplicateurs et classes charactéristiques, Trans. Amer. Math. Soc. 89 (1958), 256-266. MR 20 #6099.
- 9. S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York, 1963. MR 28 #122.
- 10. E. A. Michael, Continuous selections. II, III, Ann. of Math. (2) 64 (1956), 562-580; ibid. (2) 65 (1957), 375-390. MR 18, 325; 750.
- 11. J. W. Milnor, Construction of universal bundles. I, II, Ann. of Math. (2) 63 (1956), 272-284, 430-436. MR 17, 994; 1120.
- 12. C. C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40-63, 64-86 (III to appear). MR 30 #2106.
- 13. L. S. Pontrjagin, Continuous groups, GITTL, Moscow, 1938; English transl., Princeton Math. Series, vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44.
- 14. J.-P. Serre, Extensions de groupes localement compacts (d'après Iwasawa et Gleason), Séminaire Bourbaki 1949/50, Exposé 27, 2ième éd., Secrétariat mathématique, Paris, 1959. MR 28 #1083.
- 15. D. Wigner, Algebraic cohomology of topological groups, Bull. Amer. Math. Soc. 76 (1970), 825-826. MR 41 #8574.
- 16. N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507-576. MR 37 #1445.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720